27 research outputs found

    SVCEval-RA: an evaluation framework for adaptive scalable video streaming

    Full text link
    [EN] Multimedia content adaption strategies are becoming increasingly important for effective video streaming over the actual heterogeneous networks. Thus, evaluation frameworks for adaptive video play an important role in the designing and deploying process of adaptive multimedia streaming systems. This paper describes a novel simulation framework for rate-adaptive video transmission using the Scalable Video Coding standard (H.264/SVC). Our approach uses feedback information about the available bandwidth to allow the video source to select the most suitable combination of SVC layers for the transmission of a video sequence. The proposed solution has been integrated into the network simulator NS-2 in order to support realistic network simulations. To demonstrate the usefulness of the proposed solution we perform a simulation study where a video sequence was transmitted over a three network scenarios. The experimental results show that the Adaptive SVC scheme implemented in our framework provides an efficient alternative that helps to avoid an increase in the network congestion in resource-constrained networks. Improvements in video quality, in terms of PSNR (Peak Signal to Noise Ratio) and SSIM (Structural Similarity Index) are also obtained.Castellanos HernĂĄndez, WE.; Guerri Cebollada, JC.; Arce Vila, P. (2017). SVCEval-RA: an evaluation framework for adaptive scalable video streaming. Multimedia Tools and Applications. 76(1):437-461. doi:10.1007/s11042-015-3046-yS437461761Akhshabi S, Begen AC, Dovrolis C (2011) An experimental evaluation of rate-adaptation algorithms in adaptive streaming over HTTP. In: Proceedings of the second annual ACM conference on Multimedia systems. ACM, pp 157–168Alabdulkarim MN, Rikli N-E (2012) QoS Provisioning for H.264/SVC Streams over Ad-Hoc ZigBee Networks Using Cross-Layer Design. In: 8th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM). pp 1–8Birkos K, Tselios C, Dagiuklas T, Kotsopoulos S (2013) Peer selection and scheduling of H. 264 SVC video over wireless networks. In: Wireless Communications and Networking Conference (WCNC), 2013 IEEE. pp 1633–1638Castellanos W (2014) SVCEval-RA - An Evaluation Framework for Adaptive Scalable Video Streaming. In: SourceForge Project. http://sourceforge.net/projects/svceval-ra/ . Accessed 1 May 2015Castellanos W, Guerri JC, Arce P (2015) A QoS-aware routing protocol with adaptive feedback scheme for video streaming for mobile networks. Comput Commun. http://dx.doi.org/10.1016/j.comcom.2015.08.012Castellanos W, Arce P, Acelas P, Guerri JC (2012) Route Recovery Algorithm for QoS-Aware Routing in MANETs. Springer Berlin Heidelberg, Bilbao, pp. 81–93Chikkerur S, Sundaram V, Reisslein M, Karam LJ (2011) Objective video quality assessment methods: A classification, review, and performance comparison. Broadcast, IEEE Trans on 57:165–182Choupani R, Wong S, Tolun M (2014) Multiple description coding for SNR scalable video transmission over unreliable networks. Multimed Tools Appl 69:843–858. doi: 10.1007/s11042-012-1150-9CISCO Corp. (2014) Cisco Visual Networking Index Forecast and Methodology. In: White Paper. http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.pdf.Dai M, Zhang Y, Loguinov D (2009) A unified traffic model for MPEG-4 and H. 264 video traces. IEEE Trans Multimedia 11:1010–1023Detti A, Bianchi G, Pisa C, et al. (2009) SVEF: an open-source experimental evaluation framework for H.264 scalable video streaming. In: IEEE Symposium on Computers and Communications. pp 36–41Espina F, Morato D, Izal M, Magaña E (2014) Analytical model for MPEG video frame loss rates and playback interruptions on packet networks. Multimed Tools Appl 72:361–383. doi: 10.1007/s11042-012-1344-1Fiems D, Steyaert B, Bruneel H (2012) A genetic approach to Markovian characterisation of H.264 scalable video. Multimedia Tools Appl 58:125–146Floyd S, Handley M, Kohler E Datagram Congestion Control Protocol (DCCP). http://tools.ietf.org/html/rfc4340 . Accessed 17 Feb 2014Floyd S, Padhye J, Widmer J TCP Friendly Rate Control (TFRC): Protocol Specification. http://tools.ietf.org/html/rfc5348 . Accessed 17 Feb 2014Fraz M, Malkani YA, Elahi MA (2009) Design and implementation of real time video streaming and ROI transmission system using RTP on an embedded digital signal processing (DSP) platform. In: 2nd International Conference on Computer, Control and Communication, 2009. IC4 2009. pp 1–6ISO/IEC (2014) Information technology - Dynamic adaptive streaming over HTTP (DASH) - Part 1: Media presentation description and segment formats.ITU-T (2013) Rec. H.264 & ISO/IEC 14496-10 AVC. Advanced Video Coding for Generic Audiovisual Services.Ivrlač MT, Choi LU, Steinbach E, Nossek JA (2009) Models and analysis of streaming video transmission over wireless fading channels. Signal Process Image Commun 24:651–665. doi: 10.1016/j.image.2009.04.005Karki R, Seenivasan T, Claypool M, Kinicki R (2010) Performance Analysis of Home Streaming Video Using Orb. In: Proceedings of the 20th International Workshop on Network and Operating Systems Support for Digital Audio and Video. ACM, New York, NY, USA, pp 111–116Ke C-H (2012) myEvalSVC-an Integrated Simulation Framework for Evaluation of H. 264/SVC Transmission. KSII Trans Internet Inf Syst (TIIS) 6:377–392. doi: 10.3837/tiis.2012.01.021Ke C-H, Shieh C-K, Hwang W-S, Ziviani A (2008) An Evaluation Framework for More Realistic Simulations of MPEG Video Transmission. J Inf Sci Eng 24:425–440Klaue J, Rathke B, Wolisz A (2003) Evalvid–A framework for video transmission and quality evaluation. In: Computer Performance Evaluation. Modelling Techniques and Tools. Springer, pp 255–272Le TA, Nguyen H (2014) End-to-end transmission of scalable video contents: performance evaluation over EvalSVC—a new open-source evaluation platform. Multimed Tools Appl 72:1239–1256. doi: 10.1007/s11042-013-1444-6Lie A, Klaue J (2008) Evalvid-RA: trace driven simulation of rate adaptive MPEG-4 VBR video. Multimedia Systems 14:33–50. doi: 10.1007/s00530-007-0110-0Moving Pictures Experts Group and ITU-T Video Coding Experts Group (2011) H. 264/SVC reference software (JSVM 9.19.14) and Manual.Nightingale J, Wang Q, Grecos C (2014) Empirical evaluation of H.264/SVC streaming in resource-constrained multihomed mobile networks. Multimed Tools Appl 70:2011–2035. doi: 10.1007/s11042-012-1219-5Parmar H, Thornburgh M (2012) Real-Time Messaging Protocol (RTMP) Specification. AdobePolitis I, Dounis L, Dagiuklas T (2012) H. 264/SVC vs. H. 264/AVC video quality comparison under QoE-driven seamless handoff. Signal Process Image Commun 27:814–826Pozueco L, Pañeda XG, GarcĂ­a R, et al. (2013) Adaptable system based on Scalable Video Coding for high-quality video service. Comput Electr Eng 39:775–789. doi: 10.1016/j.compeleceng.2013.01.015Pozueco L, Pañeda XG, GarcĂ­a R, et al. (2014) Adaptation engine for a streaming service based on MPEG-DASH. Multimed Tools Appl 1–20. doi: 10.1007/s11042-014-2034-ySchwarz H, Marpe D, Wiegand T (2007) Overview of the Scalable Video Coding Extension of the H.264/AVC Standard. IEEE Trans Circ Syst Video Technol 17:1103–1120. doi: 10.1109/TCSVT.2007.905532Seo H-Y (2013) An Efficient Transmission Scheme of MPEG2-TS over RTP for a Hybrid DMB System. ETRI J 35:655–665. doi: 10.4218/etrij.13.0112.0124Sohn H, Yoo H, De Neve W, et al. (2010) Full-Reference Video Quality Metric for Fully Scalable and Mobile SVC Content. IEEE Trans Broadcast 56:269–280. doi: 10.1109/TBC.2010.2050628Sousa-Vieira M-E (2011) Suitability of the M/G/∞ process for modeling scalable H.264 video traffic. In: Analytical and Stochastic Modeling Techniques and Applications. Springer, pp 149–158Tanwir S, Perros H (2013) A Survey of VBR Video Traffic Models. IEEE Commun Surv Tutor 15:1778–1802. doi: 10.1109/SURV.2013.010413.00071Tanwir S, Perros HG (2014) VBR Video Traffic Models. Wiley, HobokenThe Network Simulator (NS-2). http://www.isi.edu/nsnam/ns . Accessed 6 Feb 2015Unanue I, Urteaga I, Husemann R, et al. (2011) A Tutorial on H. 264/SVC Scalable Video Coding and its Tradeoff between Quality, Coding Efficiency and Performance. Recent Advances on Video Coding 1–24.Van der Auwera G, David PT, Reisslein M, Karam LJ (2008) Traffic and quality characterization of the H. 264/AVC scalable video coding extension. Adv Multimedia 2008:1Wang Y, Claypool M (2005) RealTracer—Tools for Measuring the Performance of RealVideo on the Internet. Multimed Tools Appl 27:411–430. doi: 10.1007/s11042-005-3757-6Wang Z, Lu L, Bovik AC (2004) Video quality assessment based on structural distortion measurement. Signal Process Image Commun 19:121–132. doi: 10.1016/S0923-5965(03)00076–6Wien M, Schwarz H, Oelbaum T (2007) Performance Analysis of SVC. IEEE Trans Circ Syst for Video Technol 17:1194–1203. doi: 10.1109/TCSVT.2007.905530YUV video repository. ftp://ftp.tnt.uni-hannover.de/pub/svc/testsequences/ . Accessed 10 Jan 201

    Influence of adding multiwalled carbon nanotubes on the adhesive strength of composite epoxy/sol–gel materials

    Get PDF
    The tensile shear strength of a composite epoxy/sol–gel system modified with different ratios of multiwall carbon nanotubes (MWCNTs) was evaluated using a mechanical testing machine. The experimental results showed that the shear strength increased when lower than ~0.07 wt% of MWCNTs were added in the composite solution. The increase of the shear strength was attributed to both the mechanical load transfer from the matrix to the MWCNTs and the high specific surface area of this material that increased the degree of crosslinking with other inorganic fillers in the formulation. However, a decrease in the adhesive shear strength was observed after more than ~0.07 wt% MWCNTs were added to the composite. The reason for this may be related to the high concentration of MWCNTs within the matrix leading to excessively high viscosity, dewetting of the substrate surfaces, and reduced bonding of MWCNTs with the matrix, thereby limiting the strength. SEM observation of the fracture surfaces for composite epoxy/sol–gel adhesive materials with 0.01 wt% MWCNTs showed a mixed interfacial/cohesive fracture mode. This fracture mode indicated strong links at the adhesive/substrate interface, and interaction between CNTs and the matrix was achieved; therefore, adhesion performance of the composite epoxy/sol–gel material to the substrate was improved. An increase of a strong peak related to the C–O bond at ~1733 cm-1 in the FTIR spectra was observed. This peak represented crosslinking between the CNT surface and the organosilica nanoparticles in the MWCNTs-doped composite adhesive. Raman spectroscopy was also used to identify MWCNTs within the adhesive material. The Raman spectra exhibit peaks at ~1275 cm-1 and in the range of ~1549–1590 cm-1. The former is the graphite G-band, while the latter is the diamond D-band. The D-band and G-band represent the C–C single bond and C=C double bond in carbon nanotubes, respectively

    Scalable Video Coding

    No full text
    With the rapid improvements in digital communication technologies, distributing high-definition visual information has become more widespread. However, the available technologies were not sufficient to support the rising demand for high-definition video. This situation is further complicated when the network resources such as the available bandwidth fluctuates, or packet losses occur during transmission. In this dissertation we present several video compression techniques which are capable of adapting with the varying network conditions. We address both challenges namely, the fluctuations in the available resources such as the bandwidth and processing power, and packet losses.These problems in turn translates into degradation of the perceived video playback as jitter, and delay before video playback starts. Hence, we concentrate on developing robust and fast adaptive video coding schemes necessary for handling the changes in the physical characteristics of the communication networks. We present a new multi-layer scalable video coding (SVC) method for optimizing the bit-per-pixel rate of the video which is robust against packet losses. The method reduces the quality degradation in presence of data loss by re-organizing the frames in a hierarchical structure and improving the video quality through decomposing each frame suitably to restrict the error propagation.Moreover, we present a solution for the quality degradation in video reconstruction when the video is scrambled for privacy protection. We also present two methods based on multiple description video coding (MDC) to handle packet losses in networks with a high rate of transmission error.The proposed methods are based on combining SVC with MDC through decomposing the video into spatial sub-streams in the first method, and SNR sub-streams in the second method. In both proposed methods, the error resilience of the video is increased. The proposed methods have the capability of being used as SVC methods where any data loss or corruption reduces the quality of the video in a minimized way, and except for the case when all descriptions are lost, the video streams do not experience jitter at playback. The proposed methods provide the feasibility of reducing data rate by scaling down the video whenever the connection suffers from a low bandwidth problem. We also propose Discrete Wavelet Transform (DWT)-based optimizations for MDC. A major drawback in MDC methods is their inefficiency in terms of bit-per-pixel which is a consequence of preserving correlation between decomposed video segments. We propose a method based on the self-similarity between DWT coefficients at different frequency levels to improve the coding efficiency of DWT-based MDC. In the proposed method, whenever a description is lost the coefficients at the delivered descriptions are utilized for estimating the missing data using self-similarity property.Computer Engineerin

    A Drift-Reduced Hierarchical Wavelet Coding Scheme for Scalable Video Transmissions

    No full text
    Abstract—Scalable video coding allows for the capability of (partially) decoding a video bitstream when faced with communication deficiencies such as low bandwidth or loss of data resulting in lower video quality. As the encoding is usually based on perfectly reconstructed frames, such deficiencies result in differently decoded frames at the decoder than the ones used in the encoder and, therefore, leading to errors being accumulated in the decoder. This is commonly referred to as the drift error. Drift-free scalable video coding methods also suffer from the low performance problem as they do not combine the residue encoding scheme of the current standards such as MPEG-4 and H.264 with scalability characteristics. We propose a scalable video coding method which is based on the motion compensation and residue encoding methods found in current video standards combined with the scalability property of discrete wavelet transform. Our proposed method aims to reduce the drift error while preserving the compression efficiency. Our results show that the drift error has been greatly reduced when a hierarchical structure for frame encoding is introduced
    corecore